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Abstract. Coastal areas face a growing threat from marine debris, impacting both ecological and economic 

well-being. Traditional methods for studying debris distribution are often time-consuming and labor-

intensive. This study explores the use of Unmanned Aerial Vehicles (UAVs) equipped with high-resolution 

imagery for mapping and characterizing marine debris along Cinta Coast, Indonesia. We employ two 

supervised classification algorithms, Maximum Likelihood Classification (MLC) and Minimum Distance 

Classification (MDC), to classify UAV imagery and identify the distribution of debris. Accuracy assessment 

of these classifications will be conducted using a confusion matrix and compared with data collected from 

direct transects. Our preliminary results indicate that the MLC method achieved superior overall accuracy 
(95.65%) compared to MDC (81.59%) in classifying debris from UAV images. This suggests UAVs offer a 

promising alternative for debris distribution identification, with advantages and limitations depending on 

field conditions. Furthermore, the MLC method appears well-suited for mapping debris distribution 

consistent with direct transect data. We hypothesize that oceanographic factors like tides and surface 

currents influence debris distribution on the Cinta Coast. Tides may transport debris closer to shore, while 

currents, potentially originating from rivers flowing into Jakarta Bay, might be the primary source of debris. 

This study's findings aim to contribute to the development of more efficient and accurate methods for 

marine debris monitoring, ultimately aiding in coastal conservation efforts. 
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Introduction. Coastal regions, rich in natural resources, have historically supported 

significant human populations and economic activities (Kibria et al 2023). The expansion 

of industries, services, and tourism in these areas has led to an increase in waste 
generation, a substantial portion of which ultimately enters the marine environment 

(Mejjad et al 2022). Among the countries most affected by this issue, Indonesia, with its 
extensive coastal population, has become a major contributor to global marine pollution 

(Adyasari et al 2021). 

Marine debris poses a significant threat to marine ecosystems and biodiversity 
(Tome et al. 2024). Defined by NOAA (2013) as any persistent, manufactured, or processed 

solid material discarded, lost, or abandoned in the marine environment, marine debris can 

disrupt fragile ecosystems and have profound ecological consequences. Addressing this 
issue is a global priority and aligns with the United Nations Sustainable Development Goals 

(SDGs), particularly Goal 14, which highlights the urgent need to reduce marine pollution 
through effective management strategies (Assidiq et al. 2023). The environmental, 

economic, and public health impacts of marine debris depend on various factors, including 

its type, size, and distribution (Hafeez et al. 2018; Wilcox et al. 2015). The ecological 
consequences include habitat degradation, the entanglement of marine organisms, and the 

ingestion of plastic debris, all of which contribute to biodiversity loss (NOAA 2013). 
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Cinta Beach, located in Tanjung Pasir, Tangerang Regency in the northern part of Java 

Island, serves as a case study to examine the impacts of marine debris on coastal 
communities. The area, characterized by growing tourism and fisheries industries, is 

heavily affected by marine debris due to its proximity to the Cisadane River and Jakarta 
Bay. The accumulation of debris not only threatens local ecosystems but also disrupts 

economic activities such as fishing and tourism. Traditional methods for monitoring marine 

debris, such as beach transects, are labor-intensive and time-consuming (Rußwurm et al 
2023). To address these limitations, remote sensing technologies, particularly Unmanned 

Aerial Vehicles (UAVs), have emerged as promising tools for rapid and efficient marine 

debris assessment (Guffogg et al 2021; Salgado-Hernanz et al 2021). 
UAVs, or drones, offer a cost-effective and flexible platform for high-resolution 

aerial imaging, presenting several advantages over satellite-based monitoring (Merlino et 
al 2020; Takaya et al 2022). UAVs operate at lower altitudes, allowing for detailed mapping 

of marine debris distribution (Escobar-Sánchez et al 2022; Shen et al 2024). However, 

various challenges impact the accuracy and efficiency of UAV-based debris detection, 
including limitations in spatial resolution, weather conditions, flight duration constraints, 

and the complexity of data processing. For example, achieving an optimal spatial resolution 
(e.g., 200 pixels/meter) for mapping beach litter is difficult under changing environmental 

conditions (Taddia et al 2021). Adverse weather conditions such as strong winds, rain, and 

low visibility can further compromise image quality and obstruct UAV operations. Moreover, 
limited battery life constrains the area that can be surveyed in a single flight, potentially 

leading to incomplete data collection. Additionally, processing UAV imagery demands 

advanced computational techniques and robust classification algorithms, making data 
interpretation complex and resource-intensive (Agamuthu et al 2024). 

The accuracy of UAV-based marine debris monitoring primarily relies on the image 
classification techniques used. Two commonly employed methods are Maximum Likelihood 

Classification (MLC) and Minimum Distance Classification (MDC). MLC, a statistical method 

that assumes a Gaussian distribution for each class, is recognized for its effectiveness in 
managing multi-dimensional data (Ismanto et al 2024). Research has shown that MLC can 

achieve high classification accuracy when applied to UAV imagery. In contrast, MDC, which 
classifies pixels based on the shortest distance to the mean of each class, is 

computationally efficient but may be less effective in complex environments where debris 

types share spectral characteristics (Acuña-Ruz et al 2018). 
This study investigates the potential of UAV imagery for mapping marine debris at 

Cinta Beach and evaluates the effectiveness of different image classification techniques, 
specifically MLC and MDC, in identifying and quantifying marine debris. By addressing the 

technical challenges associated with UAV-based monitoring, this research aims to enhance 

the accuracy and efficiency of remote sensing applications in marine debris assessment, 
contributing to more effective environmental management strategies. 

  
Material and Method 
 

Data. This study was conducted along Cinta Beach, located in Tanjung Pasir Village, Teluk 

Naga District, Tangerang Regency, Indonesia. Geographically, the study area extends from 

6°0'46.78" S and 106°40'45.44" E to 6°1'2.97" S and 106°41'0.92" E, as shown in Figure 
1. 
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Figure 1. Research study area. 

 
The data used in this study were collected through Unmanned Aerial Vehicle (UAV) 

imagery, complemented by tidal, ocean current, and wind data. High-resolution images 

were acquired using a DJI Phantom 3 Pro drone equipped with a 12-megapixel camera. 
The imagery was processed using Agisoft Photoscan to generate orthophotos. The drone 

flights were conducted under clear weather conditions with minimal wind (≤10 knots) at a 
consistent altitude of 20 meters Above Ground Level (AGL), resulting in a Ground Sampling 

Distance (GSD) of 1 cm/pixel. Additional flight parameters included a camera angle of 90°, 

85% front overlap, 80% side overlap, a flight direction of 45°, and a mapping speed of 3 
m/s. 

Tidal data for June 15, 2021, were obtained from the global tidal model TMD (Tide 

Model Driver) and analyzed to determine high and low tide timings. Ocean current data 
were sourced from the Copernicus Marine Environment Monitoring Service (CMEMS) 

(https://resources.marine.copernicus.eu/), which provides model outputs with a spatial 
resolution of 0.083° × 0.083°. Wind speed data (u- and v-components in m/s) for the 

same date were obtained from the ECMWF Copernicus Climate Data Store. These reanalysis 

datasets offer hourly temporal resolution and a spatial resolution of 0.25° × 0.25°. 
 

Drone image data processing. Imagery acquisition focused on the intertidal zone, where 
marine debris distribution is influenced by tidal fluctuations. The drone's flight altitude of 

20 meters ensured the capture of macro-sized debris with a GSD of 1 cm/pixel. The 

processing workflow followed the Structure from Motion (SfM) technique, which 
reconstructs 3D structures from overlapping images (Westoby et al 2012; Jarahizadeh & 

Salehi 2024). Similar to stereoscopic photogrammetry, SfM generates a 3D model using 
multi-view images (Bessin et al 2023). The images were processed in Agisoft Photoscan, a 

photogrammetric software capable of producing high-resolution orthophotos (Barrile et al 

2017), elevation points, and Digital Elevation Models (DEMs) (Gil-Docampo et al 2024). 
The orthophoto generation process in Agisoft Photoscan involves: 1) importing images and 

reconstructing flight paths; 2) image alignment; 3) inputting Ground Control Points (GCPs); 

4) optimizing alignment; 5) creating dense point clouds; 6) building a 3D mesh; 7) 
generating a texture model; 8) creating a Digital Elevation Model (DEM); and 9) generating 

an orthophoto. No additional image enhancement techniques were applied, as the ortho 
mosaics provided sufficient contrast for distinguishing debris from sand and water. 
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Identification of waste distribution using supervised classification method. 

Supervised classification requires manual input to define class boundaries using training 
samples, which represent the spectral characteristics of different marine debris types. 

Unlike unsupervised classification, where clustering is based solely on spectral similarities, 
supervised classification relies on predefined training areas derived from ground-truth 

data. 

In this study, training areas were delineated using field survey data and high-
resolution imagery. The MLC and MDC algorithms were employed due to their widespread 

use in remote sensing and ease of implementation. While more advanced classifiers such 

as Support Vector Machine (SVM) and Random Forest (RF) could improve accuracy, their 
higher computational demands and parameter tuning were beyond the scope of this study. 

The classification process began with the selection of training areas representing 
different debris types, including plastic, wood, and other materials. Adequate training 

samples were collected to ensure statistically robust classification results. The classified 

image was used to map the spatial distribution of marine debris along the coast. 
 

Validation of marine debris distribution. The accuracy of the classified debris 
distribution was assessed using an error matrix, which compares the results from MLC and 

MDC classifications with ground-truth data obtained from field surveys. An error matrix 

(also known as a confusion matrix) evaluates classification performance using three key 
metrics: producer’s accuracy, user’s accuracy, and overall accuracy (Lillesand et al 2015). 

Producer’s accuracy (also known as omission error) measures the probability that a given 

class is correctly classified. It is calculated as the number of correctly classified pixels 
divided by the total number of pixels in that class (Foody 2020). User’s accuracy (also 

known as commission error) represents the likelihood that a pixel classified into a specific 
category truly belongs to that class. It is calculated as the number of correctly classified 

pixels divided by the total pixels assigned to that category (Lu et al 2017). Overall accuracy 

is the proportion of correctly classified pixels across all classes. 
Apriyanto et al (2019) recommended kappa accuracy as a more comprehensive 

metric since it accounts for all matrix components. According to Khatami et al (2016), a 
minimum classification accuracy of 75% is required for land cover classification using 

satellite imagery. To validate the classification results, a direct transect survey was 

conducted along the coastline, dividing the study area into five subplots (Figure 2). Marine 
macro-debris was manually collected, categorized by type (e.g., plastic, rubber, metal, 

glass, fabric, wood), and weighed at each sampling point. 
 

 
(a) 

 
(b) 

Figure 2. (a) Division of transect into 5 lanes (Side view) and (b) Example of sub-transect box 
placement in each lane (Source: KLHK 2020). 

 

Marine debris density was calculated as the weight of debris per square meter (M) in grams 
per square meter (g/m²) using the following equation: 

 

𝑀 =
𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑠𝑡𝑒  (𝑔)

𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑏𝑜𝑥 𝑎𝑟𝑒𝑎 (𝑚2)
        (1)                    
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The composition of marine debris was determined as the percentage of each debris type 

relative to the total debris collected within a transect box: 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (%) =
𝑥

∑ 𝑥𝑖
𝑛
𝑖=1

𝑥 100%        (2)                                                                                                

 
where x represents the weight of a specific debris type, ∑ 𝑥𝑖

𝑛
𝑖=1  which is the total weight of 

all debris types. 
 

Limitations and considerations. A key limitation of MLC is its assumption of normally 

distributed spectral data within each class, which may not always hold in real-world 
conditions. This can result in misclassifications, particularly for materials with similar 

spectral signatures. Additionally, MLC requires a sufficient number of representative 

training samples for each class. Although the 1 cm/pixel GSD was sufficient for detecting 
macro-debris, smaller debris items may have been missed. Future studies could explore 

advanced classification algorithms (e.g., SVM, RF) or hyperspectral imaging for improved 
differentiation (De Wit et al 2004; Faizal et al 2022). 

The differences in accuracy between MLC and MDC stem from their underlying 

methodologies. MLC considers variance and covariance within each class, enabling it to 
handle complex spectral overlaps, whereas MDC relies on a simpler distance-based 

approach, making it more prone to misclassification of spectrally similar materials. For 
example, misclassification of sand as wood by MDC suggests spectral similarities between 

certain sand patches and wood debris. 

Ground-truth data were obtained through direct field surveys and high-resolution 
imagery to delineate training areas. The classification results were validated by comparing 

them with manual transect surveys. While this method enhances classification accuracy, 

some degree of human error in debris identification and categorization remains. The spatial 
density of transects and subplots also influences the representativeness of the validation 

dataset. Georeferencing errors were minimized through UAV-based GPS data and the 
incorporation of GCPs, ensuring positional accuracy within acceptable limits for UAV 

mapping applications. 

 
Results 

 
Orthophoto characteristics. The UAV-captured images were processed into orthophotos. 

The Ground Sample Distance (GSD), or pixel resolution, was set to 0.96 cm/pixel to ensure 

that macro-debris (minimum size: 2.5 cm) could be detected. After image alignment, the 
GSD of the orthophoto increased to 1.93 cm/pixel, still sufficient for our study. The 

reprojection error was 1.14 pixels, indicating a good alignment. A higher error would result 

in more mismatched points and a poorer model. Our 80% image overlap minimized this 
error, which fell within the acceptable range of 1.5-2 pixels (Pham et al 2023). 
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Figure 3. Camera position and error estimation. 

 
Figure 3 shows the camera locations (black dots) and error ellipses. The ellipses indicate 

the X (longitude), Y (latitude), and Z (altitude) errors, reflecting the quality of the 

geotagging. These errors can be influenced by factors such as the geotagging process and 
the UAV's flight speed, which can affect GPS accuracy. The model yielded X, Y, and Z errors 

of 0.684 m, 0.631 m, and 0.481 m, respectively, with a total error of 1.048 m. Given the 
typical GPS accuracy of UAVs (0-30 meters), this total error is acceptable (Gregory 2009). 

Figure 4a presents the corrected orthophoto. The white areas in Figure 4b represent 

regions where image alignment failed due to mismatched points. 
 

 
(a) 

 
(b) 

Figure 4. Orthophoto map of the coastal area of Cinta Beach, Tangerang Regency (a) and snapshot 
of the perforated section on the orthophoto (b). 
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The orthophoto reveals that the rear of Cinta Beach is dominated by trees and semi-

permanent structures. Both the beach and the terrestrial area exhibit varying levels of 
debris, including a mix of trash and wood. The region's moderate tourism activity likely 

contributes to the debris, along with marine litter. 
 

Region of interest (ROI) and training data. This study focused on the intertidal zone 

of the coastline. The initial orthophoto, which included both land and coastal areas, was 
cropped to create a Region of Interest (ROI) (Figure 5). The ROI, representing the target 

study area, covers 2943.28 m² or 0.294 ha. 

 

 
Figure 5. Region of interest. 

  

A supervised classification approach was employed to map the distribution of marine debris 
within the ROI. Training samples, representing the classes of interest (plastic, wood, and 

sand), were defined based on ground truth data and visual interpretation of the imagery. 
Due to the similar spectral signatures of different plastic types in the imagery, plastic debris 

was classified as a single class. The classification scheme is illustrated in Figure 6. 

The distinct spectral characteristics of each class were used to create training data. 
Two supervised classification methods, MLC and MDC, were applied to classify the marine 

debris in the Cinta Coast. Both methods assign pixels to predefined classes based on their 
spectral similarity to the training data. If the pixel value falls within the specified range of 

the training data, it is classified into the corresponding class. 
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(a) 

  

  
(b) (c) 

Figure 6. Clustering by Appearance in UAV Imagery and Field for (a) Plastic, (b) Wood, and (c) 

Sand. 
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Comparison of image classification results using MLC and MDC methods. This 

supervised classification involved intensive analysis of the training area, which consisted 
of three classes: plastic waste, wood, and sand. The resulting maps of marine debris 

distribution, classified using MLC and MDC, are presented in Figure 7. 
 

 

 

(a) 

 

 

(b) 
Figure 7. Results of marine debris distribution by methods (a) MLC and (b) MDC at Cinta Beach, 

Tangerang Regency. 

  

The MLC produced three classes: plastic waste (red), wood (green), and sand (blue) (Figure 
7a). The largest area was classified as sand, covering 10,776.4 m² (Table 1). White areas 

indicate pixels that did not belong to any defined class due to their spectral characteristics. 
The MDC used the same training samples as the MLC. Figure 7b shows the resulting marine 

debris distribution map. Similar to the MLC, three classes were identified: plastic waste 

(red), wood (green), and sand (blue). The area of each class is presented in Table 1. The 
largest area classified by MDC was sand, covering 6,919.65 m². 
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Table 1 

Area calculation of classification results of (a) MLC and (b) MDC methods 
 

Class 
MLC method MDLC method 

Count (pixels) Area (m2) Count (pixels) Area (m2) 

Plastic waste 175860 65.5 175297 65.3 

Wood 13451 5.01 13031509 4854.11 
Sand 28930709 10776.4 18576752 6919.65 

 

The accuracy of the classification results was assessed using a confusion matrix, comparing 
the classified image to ground truth data collected in the field. Both MLC and MDC results 

were evaluated. Table 2 shows that for both MLC and MDC, most plastic waste and wood 
pixels were correctly classified. However, some misclassifications occurred, especially for 

pixels with spectral characteristics similar to other classes. 

 
Table 2 

Error matrix of methods (a) MDC and (b) MLC 
 

 

MLC method MDC method 

Plastic 
waste 

Wood Sand Total 
Plastic 
waste 

Wood Sand Total 

F
ie

ld
 D

a
ta

 

Plastic 

waste 
94 1 0 95 96 1 0 97 

Wood 0 6 0 6 2 0 30 32 

Sand 0 8 98 106 0 4 68 72 
Total 94 15 98 207 98 5 98 201 

 

The confusion matrix provides essential information for evaluating classification accuracy, 
including overall accuracy, producer's accuracy, user's accuracy, and kappa coefficient. 

Overall accuracy, which measures the proportion of correctly classified pixels, is commonly 
used to compare different classification methods. A minimum threshold of 75% is generally 

considered acceptable (LAPAN 2015). The confusion matrix for MLC is presented in Table 

3. 
 

Table 3  
Calculation of producer and user accuracy based on MDC method error matrix 

 

 

Producer accuracy (%) User accuracy (%) Total 
accuracy 

(%) 

Kappa 

(%) Accuracy 
Commission 

error 
Accuracy 

Commission 

error 

M
L
C
 

M
e
th

o
d
 Plastic 

waste 
100 0 98.95 1.05 

95.65 92.05 
Wood 40 60 100 0 

Sand 100 0 92.45 7.55 

M
D

C
 

M
e
th

o
d
 Plastic 

waste 
97.96 2.04 98.97 1.03 

81.59 68.59 
Wood 0 100 0 100 

Sand 69.39 30.61 94.44 5.56 

 

The confusion matrix provides important metrics for assessing classification accuracy, such 

as producer's accuracy, user's accuracy, and overall accuracy. Overall accuracy is used to 
compare different classification methods. According to LAPAN (2015), an overall accuracy 

of at least 75% is considered acceptable. For MLC, the producer's accuracy was highest for 

plastic waste and sand (100%), indicating that most pixels classified as these classes were 
correct. However, only 40% of pixels classified as wood were correct. User's accuracy was 

highest for wood (100%) but lowest for sand (92.45%). The overall accuracy for MLC was 



AACL Bioflux, 2025, Volume 18, Issue 2. 
http://www.bioflux.com.ro/aacl 632 

95.65%, exceeding the 75% threshold. The kappa coefficient was 92.05%. For MLC, the 

producer's accuracy was highest for plastic waste and sand (100%), indicating that most 
pixels classified as these classes were correct. However, only 40% of pixels classified as 

wood were correct. User's accuracy was highest for wood (100%) but lowest for sand 
(92.45%). The overall accuracy for MLC was 95.65%, exceeding the 75% threshold. The 

kappa coefficient was 92.05%. 

 
Distribution of macro debris at Cinta coast during the east season. Both the MLC 

and MDC methods successfully classified marine debris distribution at Cinta Coast (Figure 

8a), achieving accuracies exceeding the 75% minimum threshold.  However, the MLC-
generated distribution map (Figure 7) exhibited greater detail compared to the MDC map.  

Specifically, MLC accurately classified plastic waste and sand, whereas MDC misclassified 
some sandy areas as woody debris. Table 3 further supports MLC's superior performance. 

 

 

 
(a) (b) 

Figure 8. (a) Comparison of Accuracy Test of MLC and MDC Methods. (b) Percentage of marine 

debris composition from direct transect results at Cinta Beach, Tanjungsari. 

 
A comparative analysis of classification accuracies revealed that MLC achieved a higher 

overall accuracy of 95.65% and a kappa coefficient of 92.05%, surpassing MDC's overall 
accuracy of 81.59% and kappa coefficient of 68.59%. While both methods met the 

minimum acceptable threshold, MLC's higher accuracies demonstrate its superiority.  As 

noted by Septiani et al (2019), MLC's strength lies in its quantitative evaluation of spectral 
response variance and correlation during the classification of unknown pixels, maximizing 

probability based on training areas. In contrast, MDC, a simpler supervised classification 
method, relies on mean vectors for class assignment.  MDC's lower accuracy can be 

attributed to its lack of parameter consideration during classification and its assumption of 

normal data distribution. This study's results confirm that MLC's ability to account for class 
variance and parameterization led to fewer misclassifications of woody debris as sand 

compared to MDC. 
Complementing the UAV data, ground-truthing data was collected using transects. 

As shown in Figure 8b, plastic waste constituted the most abundant debris category 

(97.92%), followed by wood (0.96%), textiles (0.64%), glass (0.32%), and metal 
(0.16%). Comparing the classification results of MDC and MLC with the ground-truthing 

data (Table 3), MLC exhibited closer agreement. Both methods accurately identified plastic 

waste as the dominant debris type. MDC, however, showed significant discrepancies due 
to misclassifications. Consequently, MLC is the preferred method for mapping marine debris 

distribution. UAVs offer a time-efficient and cost-effective alternative for monitoring marine 
debris, especially for large-scale debris. However, the spatial resolution limitations of UAV 

imagery (1 cm/pixel in this study) can hinder the identification of smaller debris items 

(e.g., microplastics) compared to ground-truthing methods, which can identify items down 
to 2.5 cm. The limited flight time of the UAV used in this study also constrained the total 
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area that could be surveyed. Future studies could consider using UAVs with longer flight 

times or employing multiple flights to cover larger regions. 
The distribution of marine debris at Cinta Coast is significantly influenced by tidal 

cycles. During high tide, debris is transported from the sea towards the shore, while the 
reverse occurs during low tide. As illustrated in Figure 9a, the tide was rising during the 

data collection on June 15, 2021. This rising tide caused seawater to inundate a larger 

portion of the coastline, concentrating debris at Cinta Coast. The UAV imagery clearly 
shows debris accumulating from the highest tidal point towards the shoreline, indicating a 

dominant seaward source of debris. 

 
 

(a) (b) 

 
(c) 

Figure 9. Tidal (a), Windrose (b), and Current pattern (c) in the waters of Cinta Coast on June 15, 

2021. 

 
The prevailing wind direction at Cinta Coast on June 15, 2021, was from the west, as shown 

in the wind rose plot (Figure 9b). Approximately 58.3% of the wind originated from 270-

300 degrees, influencing surface currents in the northern Java Sea. These westward winds 
drive surface currents in the same direction, a common phenomenon in Indonesian waters. 

 Figure 9c presents the modeled current patterns in the Java Sea, covering the 

northern part of Jakarta Bay to the northern coast of Tangerang Regency. The current 
direction at the time of data collection (10:30 AM, June 16, 2021) was predominantly 

westward. The average current speed was 29.2 cm/s, with higher speeds of 40-45 cm/s 
observed in the open sea and lower speeds of 5-10 cm/s near Jakarta Bay and Cinta Coast. 

This westward current is likely a contributing factor to the distribution of marine debris at 

Cinta Coast. While the available current data provides a general indication of westward 
flow, higher resolution models would be needed to accurately simulate debris transport 

patterns in the nearshore environment. 
 Situated at the mouth of Jakarta Bay, Cinta Coast is nearly perpendicular to the 

incoming currents from the bay. The dominance of plastic debris at Cinta Coast suggests 

that it originates from Jakarta Bay and rivers flowing into the bay, transported by these 
currents. This hypothesis aligns with Jasmin et al (2019) findings, which showed that 

simulated particle trajectories of macro-debris from 13 river mouths in Jakarta Bay moved 

westward, following surface currents, during a similar period (July 2019).  The westward 
currents, combined with the rising tide during data collection, likely contributed to the 

observed accumulation of debris on the shore. 
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Discussion. This study demonstrated the effectiveness of UAV imagery and the Maximum 

Likelihood Classification (MLC) method for assessing marine debris distribution at Cinta 
Coast, Indonesia. MLC's superior performance compared to MDC highlights the importance 

of considering spectral variance and correlation in complex coastal environments (Yohanlis 
& Putri 2021).  The dominance of plastic debris, consistent with other studies in the region, 

underscores the urgent need for effective waste management strategies (Taddia et al 

2021). 
The study also revealed the influence of oceanographic factors, particularly tides 

and currents, on debris accumulation (Blickley et al 2016; Krelling & Turra 2019; Steele & 

Miller 2022). The rising tide on the day of data collection concentrated debris along the 
shoreline, making it readily detectable by the UAV (Wahid & Mutaqin 2024).  The westward 

currents in the Java Sea, driven by prevailing westerly winds, suggest a likely source of 
debris from Jakarta Bay and its tributary rivers (Kisnarti et al 2024). While the available 

current data provides a general indication of westward flow, higher resolution models would 

be needed to accurately simulate debris transport patterns in the nearshore environment 
(Burgess et al 2024; Sun et al 2024; Hernandez et al 2024). 

This study contributes to the growing body of knowledge on marine debris 
monitoring using UAVs. Compared to satellite imagery, which offers broader spatial 

coverage but lower resolution, UAVs provide a more suitable tool for detailed assessments 

in smaller, targeted areas (Petropoulos et al 2022). Manual beach surveys, while providing 
high accuracy, are labor-intensive and time-consuming, making UAVs a more efficient 

option for repeated monitoring (Murphy et al 2020; Freitas et al 2022). The relatively low 

cost and ease of use of UAVs make them a promising tool for community-based monitoring 
programs, empowering local stakeholders to collect valuable data on marine debris 

accumulation and inform management strategies (Merlino et al 2020; Takaya et al 2022). 
Future research could explore the integration of UAV data with hydrodynamic models to 

predict debris transport pathways and inform targeted interventions (Maximenko et al 

2021). Furthermore, incorporating hyperspectral imaging could improve the classification 
accuracy of different debris types, allowing for more detailed assessments of marine debris 

composition (Gomez et al 2024). The limitations of UAVs, including flight time constraints 
and susceptibility to environmental factors like strong winds or rain, should also be 

considered when designing monitoring programs. Future studies could consider using UAVs 

with longer flight times or employing multiple flights to cover larger regions (Açıl et al 
2023). While the 1 cm/pixel GSD was sufficient to identify macro-debris, the identification 

of microplastics would require higher resolution imagery (Olyaei et al 2024). Despite these 
limitations, UAV-based monitoring offers a valuable tool for understanding and managing 

marine debris pollution, particularly in dynamic coastal environments like Cinta Coast. The 

data collected can be used to inform policy decisions related to marine debris management, 
such as targeted cleanup efforts and the implementation of waste reduction strategies 

(Jiang et al 2020). 

 
Conclusions. This study aimed to identify and monitor marine debris on Cinta Coast, 

Tanjung Pasir, and Tangerang Regency using a UAV approach. The results showed that the 
guided classification method with the MLC method obtained the largest area of sand, which 

was 10776.4 m2, followed by debris with an area of 65.5 m2, and wood with an area of 5.1 

m2. Meanwhile, the MDC method produced an area of sand of 6919.65 m2, wood with an 
area of 4854.11 m2, and debris with an area of 65.3 m2. The classification results using the 

MLC method appeared more detailed than those using the MDC method. The debris and 
sand classes in the MLC method could be classified well. In the MDC method, there was an 

error in interpretation, where the area that should have been classified as sand was 

classified as wood. The overall accuracy of the guided classification results on the UAV 
image with the MLC method was superior, with a value of 95.65%, while the MDC method 

only had an accuracy of 81.59%. The use of UAVs/drones can be used as an alternative 

method to identify the distribution of debris according to field conditions, with several 
advantages and disadvantages. The MLC method is the best method for mapping the 

distribution of marine debris that is consistent with direct transect results. The distribution 
of marine debris on Cinta Coast is influenced by oceanographic factors such as tides that 
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move debris further towards the coast and surface currents generated by wind, which are 

suspected to be the source of debris on Cinta Coast, namely the movement of debris from 
several rivers that flow into Jakarta Bay. 
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