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Abstract. Thermophiles can live in high temperatures; their value stems primarily from their ability to 
produce thermoenzymes, which have a wide variety of applications in the market and can survive 
difficult industrial manufacturing processes. These thermophiles can be isolated from different sources. 
However, in this review, we focus on their presence in the Hot springs, which are unique natural 
environments presented worldwide; some of these hot springs have considerable amounts of industrial 
enzymes that can be extracted and produced. Nevertheless, the original culture-based approaches still 
challenge the isolation of these bacteria and their enzymes' identification. New techniques are arising to 
simplify this process, mainly the culture-independent procedures; one of these new processes is the 
metaomic approaches that introduce the genes (by metagenomics), transcripts (by 
metatranscriptomics), proteins (by metaproteomics), and metabolites (by metabolomics) from complex 
microbial communities to analyze the biochemical function and microbial interactions in situ, they 
improve our understanding and predicting the contaminant biotransformation capacities of microbial 
communities. For hot springs, culture-independent techniques allow a comprehensive analysis of 
microbial populations. 
Key Words: metagenomics, metaproteomics, metatranscriptomics, thermoenzymes, thermophiles. 

 

 

Introduction. Extreme thermophiles and thermophile bacteria are the organisms that 

can grow at elevated temperatures optimally; hydrothermal ventilation structures of 

geothermal activity, such as hot springs and ocean vents, were the most widespread 

environments for these organisms. These thermophiles have been isolated from 

terrestrial and aquatic ecosystems of elevated temperatures. These thermophiles also, 

can produce several enzymes used in different aspects of our lives due to their 

thermostability and thermoactivity (Yavuz 2003). Hence, isolating and identifying 

thermophilic bacteria from natural sources is essential in discovering new industrial 

enzymes.  

However, enzymes commonly produce multiple environmentally friendly and 

sustainable products in industrial environments. There is an enhanced demand for 

enzymes that function well under the varying circumstances of numerous industrial 

procedures. Over the past centuries, with the technical advances in DNA and protein 

technology, distinct approaches have developed to satisfy these increasing requirements. 

One of these approaches is bioprospecting, which means looking for new enzymes in 

different settings that contain elevated natural diversity micro-organisms (Speda 2017). 

Furthermore, although the ubiquity and complexity of microbial communities have 

been pretty well known for a long time, advances in high-throughput sequencing have 

created technological innovations that supplement culture-based strategies in both their 

molecular precision and usability to a large scientific world. The first culture-independent 

methods were based on low-performance bacterial 16S ribosomal rRNA gene sequencing, 

and the reliability and efficacy of its surveys dramatically improved with enhanced 

sequencing methods throughput (Tringe & Hugenholtz 2008).  

Moreover, recently, approaches to genome-wide sequencing, including 

metagenomics and metatranscriptomics, have extended the scientific methods used to 

investigate microbiota. These meta-omic methods reveal the genomes, proteins, and 
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consequently, transcripts and metabolites of hundreds and hundreds of micro-organisms 

to examine molecular activity and system-level microbial interactions. All these 

responsive public assays offer unique ways of learning complex ecosystems (Segata et al 

2013). 

Therefore, hot springs now have increasing interest due to their microbial 

contents; in Malaysia, for instance, about 60 hot springs, 75% of which are in easily 

accessible areas; their temperature varies from 23 to 98oC (Sum et al 2010). In this 

review, we aim to look into the diversity and structure of micro-organisms in hot springs 

environments, highlight the modern research on industrial enzymes derived from hot 

springs micro-organisms and their commercial use, and understand the micro-organisms 

in hot springs using omics approaches. 

 

Thermophiles types and environments. Thermophiles are micro-organisms that live 

in high temperatures, more than 45°C. These are present in numerous geothermal 

warmed regions of the world, such as deep-sea hydrothermal flows, hot springs, and 

rotting plant materials such as peat bogs and manure (Brock 2012); also, they have been 

isolated from hot desert soils and salty wetlands (Aanniz et al 2015), and from the deep 

sea with Antarctic biota, volcano zones, and other geothermal fields in whole as 

mentioned by Herbert (1992) who also emphasized that the industry sparked the quest 

for new species as it was recognized that the capacity of such micro-organisms to live in 

these harsh circumstances was directly linked to unique characteristics consisting 

primarily of specific enzymes and biochemical pathways. The main types of extremophiles 

are psychrophiles (low temperature), thermophiles (high temperature), barophiles (high 

pressure), acidophiles (low pH), alkaliphiles (high pH), and halophiles (high salinity). 

Since their appearance, thermophiles have provided researchers with a fascinating and 

demanding forum. Besides developing under harsh conditions, extremophiles may 

generate industrial-value compounds, such as antibiotics, enzymes, and hormones 

(Rampelotto 2013; Shivlata & Satyanarayana 2015). 

Such intense microbial growing conditions are present in more common tropical 

habitats on the essential planet. Complex conditions may include the existence of strong 

chemical solvents or toxic metals. Extremophiles' development and taxonomy, especially 

thermophiles, are of growing interest. Thermophiles that exhibit ideal growing 

temperatures between 60 and 80°C  are moderate thermophiles, usually mostly bacteria 

(Antranikian et al 2017).  

Thermophiles that grow better at or above 80°C and cannot survive below 60°C 

are the hyperthermophiles, mainly Archaea (Antranikian et al 2017). Interestingly, 

certain species were extracted from regions with temperatures far hotter than their 

optimum temperature for development, e.g., Hyperthermus butylicus (Zillig et al 1990). 

This could apply to organisms isolated from temperatures well below their optimum 

growth temperature, such as Archaeoglobus profundus (Burggraf et al 1990).  

Depending on their fundamental growth temperatures, the thermophiles are 

grouped into three types (Baker et al 2001); the first type has adapted growth 

temperatures varying from 35 to 70ºC, and it is called moderate thermophiles; secondly, 

there are the extreme thermophiles that have optimum growth temperature of about 55 

to 85ºC; finally, the ones with higher optimum growth temperatures between 75 to 

113ºC are called hyperthermophiles. Their growth profile also classifies them as obligate 

thermophiles that grow between 65 to 75ºC but cannot grow below 40ºC. Facultative 

thermophiles can grow at about 37ºC, but their optimal growth temperatures are 

between 50 to 60ºC. Thermotolerant thermophiles can tolerate temperatures up to 45-

50ºC and grow under 30ºC (Pask-Hughes & Williams 1977). Interestingly, thermophiles 

produce enzymes that can work at extreme temperatures to survive these harsh 

conditions (Brock 2001). Furthermore, because these enzymes work under high 

temperatures, there is an increased interest in their industrial application. Working under 

high temperatures reduces the contamination risk, increases substrate solubility, and 

increases reaction rates (Antranikian et al 2005). Besides molecular biology, some 

enzymes have broad applications, such as heat-stable DNA polymerases for a polymerase 

chain reaction (Baker et al 2001). 
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Thermophilic enzymes. The production of thermoenzymes from thermophiles has been 

a rich research topic for the last two decades. Still, the interest in thermophiles and how 

their proteins can function at high temperatures started as early as the 1960s by Brock & 

Freeze (1969). Studies found that there is an improvement in the atomic packing in 

thermophilic enzymes when compared to the mesophilic enzymes; also, there is an 

improvement in the packing quality and electrostatic interactions, and there is increased 

hydrophobicity in the protein core, which all improve the stability of protein folding, on 

the other hand, these enzymes possess a reduction in destabilizing forces such as 

decreased conformational flexibility or entropy of unfolding (Sammond et al 2016). 

Thermophilic enzymes at high temperatures are also intrinsically firm and 

productive, offering significant biotechnological advantages over mesophilic or 

psychrophilic enzymes. In general, thermostability is associated with higher resistance to 

chemical denaturants like solvents or guanidinium hydrochloride (Rather et al 2018). 

 

Thermophilic industrial enzymes. Isolated, purified thermostable enzymes from 

newer sources remain an exciting challenge (Godfrey & West 1996). The production of 

thermophiles at high temperatures is technologically and economically significant. It 

decreases the possibility of contamination by specific mesophiles, reduces viscosity, 

encourages mixing, and results in a high substrate solubility level. Nevertheless, the 

biomass produced by such species is typically shockingly small relative to their mesophilic 

equivalents. Reduced cell counts present problems for extensive- and small-scale 

development, challenging detailed enzyme studies (Krahe et al 1996). Special equipment 

and specific processes have been developed to improve thermophiles' and 

hyperthermophiles' fermentation (Schiraldi & De Rosa 2002). The enzymes obtained from 

some extremophiles are of considerable value in the biotechnology sector, capable of 

operating under circumstances that denature enzymes extracted from most typical 

species (Mattila et al 1991). Researchers are investigating micro-organisms that live in 

hot springs as potential sources of valuable biochemicals; screening marine micro-

organisms known first for their environmental potential showed many remarkable 

biological molecules that contain rare proteins, anti-cancer agents, antialgal chemicals, 

and secreted sugars. Extracellular thermostable enzymes of significant value in the 

industry are proteases, xylanases, amylases, cellulases, pectinases, lipases, and DNA 

polymerase (Ladenstein & Antranikian 1998). 

 

DNA polymerase. DNA polymerases play an essential role in DNA replication and repair 

of the cell by utilizing deoxyribonucleoside triphosphates (dNTPs) as substrates for 

genome replication (Burke & Lupták 2018). Increasing the understanding of these 

enzymes’ function, especially in DNA sequencing and the polymerase chain reaction 

(PCR), significantly improves DNA amplification and sequencing methods. Also, there has 

been an increase in thermostable DNA polymerases since 1980, when the first type was 

isolated from Thermus aquaticus (Taq polymerase) and characterized. Since then, it has 

been widely used in DNA sequencing due to its thermostability; it facilitates the 

automated cycling of sequencing reactions and reduces the DNA template required for 

sequencing (Pavlov et al 2004). The absence of proofreading by Taq DNA polymerase is 

an issue for a few PCR procedures. DNA polymerase from Thermococcus litoralis 

Thermococcus litoralis has been reported to have an exonuclease-reading function 

(Godfrey & West 1996). Another heat-stable polymerase comes from the bacterium 

Pyrococcus furiosus; this bacterium grows optimally at 100°C, making it 

hyperthermophilic. Taq DNA polymerase is adequate for most PCR (Hamilton et al 2001). 

 

Amylases. They are enzymes that catalyze starch and glycogen hydrolysis (Palmer & 

Bonner 2007). Bacterial α-amylases, along with the fungal glucoamylases, are the main 

enzymes in the production of glucose from starch; one of the first archaeal α-amylases 

discovered from the hyperthermophilic archaeon Pyrococcus furiosus exhibits optimal 

activity at 100oC (Elleuche et al 2014). Also, amylases are commonly employed in the 

cloth, pulp, food, and fermentation sectors, such as flour manufacture, fruit juices, 

glucose-fructose syrups, sweeteners, and alcoholic drinks (Haq et al 2010). During the 
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sweeteners' production from the starch, the temperature should be 50oC or more to avoid 

the browning effect and minimize the starch pastes' viscosity; thus, thermostable α-

amylase is needed to preserve the process temperature (Castro et al 1999). Bacteria of 

the genus Bacillus are commonly used to commercialize thermostable α-amylases 

(Kubrak et al 2010). New studies are now done to produce amylases from thermophilic 

bacteria for these enzymes’ commercial production; the PCR α-amylase gene was 

identified from Anoxybacillus thermarum FRM-RBK02 that was isolated from a hot spring 

in Remboken, Indonesia, this amylase having optimum activity at 80oC (Mantiri et al 

2019). 

 

Proteases. They are enzymes that hydrolyze proteins; they have many classifications; 

depending on their optimum pH, they are classified into acidic, neutral, or alkaline 

groups; they may also be classified into aspartic, cysteine, glutamic, metallo, serine, and 

threonine depending on the amino acids present in their binding sites (Singh et al 2015). 

They are one of the most important and widely used industrial enzymes; they are present 

in all living organisms and hydrolyzes protein peptide bonds into peptides and amino 

acids (Muthu et al 2017).  

Microbial proteases demonstrate one of the world's most significant and 

heterogeneous enzyme families, comprising about 65 percent of total enzyme production. 

They are considered the world's leading biotechnology, bioengineering, and industrial 

applications (Baweja et al 2016). These have various applications, such as ingredients in 

detergent formulations, industrial food and leather manufacturing, peptide synthesis, and 

pharmaceutical products (Mechri et al 2019). With the need for enzymes, reliable 

biocatalysts would be needed to endure harsh operating procedures (Haki & Rakshit 

2003). Some haloalkaliphilic bacteria and actinomycetes have documented thermostable 

proteases (Thumar & Singh 2007; Dodia et al 2008). Compared to their mesophilic 

counterpart, thermophilic proteases have more alanine and leucine in their amino acid 

content; they are membrane-bound and have peptidase M48, peptidase M50, PDZ, and 

CBS domain (Vaidya et al 2018). 

 

Xylanases. They are a large group of enzymes that produce xylose, a carbon source for 

cell metabolism, and plant cell infection by plant pathogens. Bacteria, algae, fungi, 

protozoa, gastropods, and arthropods produce it. They are used in the paper, pulp, and 

baking industries (De Vos 2006).   

They are also used in starch hydrolysis, clarification of fruit, vegetable juices and 

wine, cheese ripening, dough fermentation, and bakery products (Dumorné et al 2017). 

Lately, thermostable xylanases have been discovered in many Thermotoga species 

(Elleuche et al 2014). Also, they were produced from thermophilic Bacillus strains from 

the Tunisian hot springs, the thermophilic anaerobic bacterium Caldicoprobacter 

algeriensis TH7C1(T), isolated from hydrothermal hot springs, the Gram-positive strain 

Rxl from the genus Thermoanaerobacterium from hot springs in Baoshan of the Yunnan 

Province, China, Acidothermus cellulolyticus 11B, isolated from hot springs in Yellowstone 

National Park, and the extremely thermophilic bacterium Dictyoglomus thermophilum 

Rt46B.1 from a New Zealand hot spring (Basit et al 2018).  

Many requirements are essential for candidate xylanases; their molecular mass 

should be small to promote their migration in pulp fibers, they should be stable and 

dynamic at high temperatures and alkaline pH, they should not have a cellulolytic effect 

to prevent hydrolysis of cellulose fibers, and they should be produced at high yields and 

inexpensive (Niehaus et al 1999). New technologies are now used to improve the 

xylanase properties; structure-based site-directed mutagenesis on the N terminus of the 

xylanase structure resulted in nine mutations and disulfide bonds that will enhance the 

thermostability of this enzyme (Watanabe et al 2016). 

 

Pectinases. They are a large enzyme group that divides pectic plant tissue 

polysaccharides into simpler molecules, such as galacturonic acid, through 

depolymerization and de-esterification reactions (Pedrolli et al 2009). They are is used in 

the fruit and textile industries, also in producing good quality paper, fermentation of 
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coffee and tea, oil extractions, and pectic wastewater treatment (Kashyap et al 2001). 

Numerous micro-organisms have produced thermostable pectinases like Clostridium 

thermosulfurogenes, Sporotrichum thermophile, Aspergillus fumigatus, and Thermomucor 

indicae-seudaticae, and from many species of Bacillus; also, Aspergillus is the primary 

source of thermophilic pectinolytic enzymes for industrial production (Dhiman et al 

2013). 

 

Lipases. They catalyze the hydrolysis of triacylglycerols to glycerol, diacylglycerols, 

mono glycerol, and free fatty acids. Bacterial lipases are categorized into eight families 

based on differences in their sequences of amino acids and biological properties (Liu & 

Kokare 2017). Lipases are used in detergent formulations, organic chemical paper 

manufacture, nutrition processing, production of biosurfactants, dairy, the oleochemical, 

agrochemical, beauty products, and medicinal manufacturing sectors (Liese et al 2006). 

Also, lipases were found in many species, such as Bacillus prodigiosus, B. pyocyaneus, 

Pseudomonas fluorescens (Hasan et al 2006), and Bacillus strain A30-1 (ATCC 53841) 

collected from Yellow Stone Park (Wang et al 1995), Geobacillus sp. TW1 in China (Li & 

Zhang 2005), and Bacillus thermoglucosidasius and Bacillus coagulans from the Setapak 

hot spring in Malaysia (Hamid et al 2003).  

In addition, extremophile lipases have become an interesting topic in industrial 

biotechnology due to their strong resistance to organic solvents, proteases, detergents, 

thermal denaturation, and chaotropic agents (Hoesl et al 2011). Also, they are stable 

under high temperatures, in the presence of organic solvents, and over a broad pH 

spectrum (Sharma et al 2018). 

 

Cellulases. They are the enzymes that hydrolyze β-1,4 links in cellulose chains and 

release oligosaccharides, cellobiosis, and glucose; various micro-organisms produce fungi 

and bacteria (Mojsov 2016). Thermophilic bacteria known to have thermostable cellulases 

are Bacillus, Geobacillus, Caldibacillus, Acidothermus, Caldocellum, and Clostridium (Patel 

et al 2019). The critical industrial uses of cellulases are in the clothing industry to 

'biopolize' fabrics to create the stonewashed appearance of denim and household laundry 

detergents to enhance the softness of the cloth's clarity (Cavaco-Paulo 1998). Other uses 

include biofuels, which means the conversion of plant biomass into bioethanol, food, and 

brewing, pulp and paper (bio pulping), and animal feeds (Wang et al 2015); besides, 

they are used in waste management improvement of soils for agriculture (Biver et al 

2014), and extraction of compounds from plants such as olive oil, pigments, and 

bioactive molecules (Sharma et al 2016). 

 

Meta‐omic approaches. Because thermophiles grow in harsh conditions, there is a 

difficulty in culturing them on standard biological media. There is a need to study 

communities of microbial organisms directly in their natural environments, bypassing the 

need for isolation and lab cultivation of individual species (Mirete et al 2016); meta-omics 

techniques appear to have broad microbial ecology applications because they provide 

unparalleled observations into the organismal and functional structure in natural society 

in situ (Figure 1). The main types of novel high-throughput molecular methods are 

metagenomics, metatranscriptomics, metaproteomics, and metabolomics (Rodríguez et al 

2015). While metagenomics and metatranscriptomics make it possible for an in-depth 

biodiversity assessment, metaproteome analyses directly measure the proteins found in 

an environmental sample, providing functional information at the intracellular level 

(Bastida et al 2012). 
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Figure 1. The diagram shows the key steps in metagenomic, metatranscriptomic, metaproteomic, and metabolomic approaches 

(Rodríguez et al 2015). 
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Metagenomics. Also known as environmental genomics, defined as "the use of whole-

genome shotgun approaches to sequence genomes from entire communities of microbes 

in environmental samples of water, air, and soil", it allows us to know more about millions 

of species of bacteria, and the discovery of new viruses mainly bacteriophages that were 

identified from water samples (Klug et al 2006). Metagenomics, this mining strategy for 

the biotechnology and pharmaceutical industries, has been disclosed as promising 

(DeCastro et al 2016). It has two phases: meta(analysis), a form of the mathematical 

study of the effects of two different analysis methods, and genomics, which investigates 

genetic structure (Rondon et al 2000). It isolates genomic DNA directly from an 

environmental sample. It is extracted through sequencing high-throughput viz shotgun 

sequencing, 454 pyrosequencing, minimizing the loss of critical elements while 

cultivation, and utilizing its methods to evaluate the structure and functional ability of the 

microbial community. Sequence-based screening is often used for genes or areas of 

developing systemic analysis, distribution, etc., while functional-based screening assesses 

microbial environmental communities' functional capacity (Baweja et al 2016). 

Also, metagenomics is divided into two essential methods; a structural 

metagenomic approach allows the study of the composition and dynamics of the 

population in a particular ecosystem, thus providing a broader explanation of the 

interactions between the different components that create a society and are necessary to 

decode its members' ecological or biological functions. The other type is the functional 

metagenomic approach; it aims to identify the active genes and generate expression 

libraries with metagenomic clones followed by activity-based screenings (Figure 2) (Alves 

et al 2018). Next Generation Sequencing (NGS) techniques have dramatically enhanced 

this approach; Illumina and Roche 454 are the leading systems in high-temperature 

environments. Illumina performs well per run and produces read lengths of up to 300bp. 

On the other hand, since Roche 454 provides more extended readings and is deemed 

simpler to map to a reference genome, it is more costly and has lower throughput 

(DeCastro et al 2016). 

 

Figure 2. It shows the process for functional characterization of microbial biogas populations 

using metagenome sequence data. Complete DNA was extracted from biogas reactor samples 

to construct whole metagenome shotgun libraries sequenced on high-throughput sequencing 

platforms. The sequencing data were quality-checked and functionally defined based on 

single-read sequences to predict the underlying biogas population's functional profiles. 

Furthermore, MAGs were compiled using a metagenome assembly followed by a binning 

method, and then their metabolic capacity was assessed (Hassa et al 2018). 

 

Metagenomic studies of the hot springs aim to understand their microbial ecology and 

identify the novel genes that are responsible for high-temperature tolerance; one of 

these studies was done in hot spring Tattapani, Himachal Pradesh in India, and the main 

results revealed that this spring is rich in the bacterial phylum Proteobacteria and other 

bacterial phyla were also presented which are Thermodesulfobacteria, Firmicutes, 

Deinococci-Thermus, Bacteriodates and Aquificea, gene isolation responsible for thermal 

tolerance in these bacteria can help develop high-temperature tolerance in crop plants 

(Mohanrao et al 2016). 
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Metaproteomics. It aims to screen and identify proteins presented within the ecosystem 

at a given time (Wilmes & Bond 2004). This will provide more information about microbial 

communities' structure, function, and dynamics, which is essential to a better 

understanding of the metabolic activity, microbial recruitment, competition in nutrient 

resources, and ecosystemic distribution of defense systems (Hettich et al 2013).  

Successful assessment of metaproteomics depends on three factors: valuable 

protein extraction from an environmental sample, protein or peptide separation before 

detection, and eventually, high-throughput clearcut protein and peptide recognition 

mainly by mass spectrometry analysis and database searching (Siggins et al 2012; 

Wilmes et al 2015). Some protein extraction methods mainly used in the analyses of 

environmental samples are guanidine hydrochloride (GuHCl), bacterial protein extraction 

reagent (B-PER), and sequential citrate-phenol (SCP) (Leary et al 2014).  

Protein separation is a very critical step to reduce the complexity of the samples; 

this can be done mainly by two techniques: gel-based methods that include one-

dimensional (1D) or two-dimensional (2D) electrophoresis, which separates proteins 

according to their size or isoelectric point (Brunelle & Green 2014), on the other hand, 

gel-free methods depend on the expansion of chromatography techniques to separate 

proteins; high-pressure liquid chromatography (HPLC) is more accessible and practical for 

separating peptide mixtures than electrophoresis, but the most frequent choice for the 

proteomic study is reversed-phase liquid chromatography (RPLC) (Xiao et al 2017; 

Hinzke et al 2019). 

Mass spectrometry (MS) is a critical step for the identification of the proteins, 

followed by database searches or de novo peptide sequencing to identify the proteins; 

after that, data interpretation - which is the incorporation of established proteins and 

metabolic pathways into functional processes - will be the final step (Figure 3) 

(Srivastava et al 2019).  

Figure 3. Samples of the microbial biogas culture, protein extraction, tryptic digestion of 

proteins, mass spectrometry of the resulting peptides, and database searching using 

mass spectrometry data to classify proteins within the metaproteome examined are all 

part of the metaproteomics workflow (Hassa et al 2018). 

 

Metaproteomics ensures the rapid and precise identification of biocatalysts in 

environmental samples and allows mining microbiomes for novel proteins from previously 

uncultured organisms. It is considered an agile approach to enzyme discovery (Wilmes & 

Bond 2004). One example of this approach in hot springs was a study done on the 

Mammoth Hot Springs in Yellowstone National Park that aimed to understand the specific 

metabolic pathways utilized by Sulfurihydrogenibium-dominated filamentous microbial 

mats; the results showed that 533 out of 665 unique proteins were associated with the 

Sulfurihydrogenibium pangenome B001 (Dong et al 2019). 

 

Metatranscriptomics. It refers to the total content of gene transcripts: the RNA copies 

of these genes in a community, considered a unique entity, at a specific moment of 

sampling. The metatranscriptomic analysis identifies the whole microbial population's 



 
AACL Bioflux, 2024, Volume 17, Issue 5. 

http://www.bioflux.com.ro/aacl 2164 

gene expression profiles, depending on the compilation of transcripts synthesized under 

different environmental conditions (Booijink et al 2010).  

It enhances our knowledge of microbial environmental communities' structure, 

function, metabolic activity, adaptive mechanisms, and regulation (Embree et al 2014). 

Differences in gene expression are observed by quantifying and comparing the 

transcriptome composition between samples of a time series or various tissues or cell 

types (Wang et al 2009). The main steps of metatranscriptomics are: firstly, to extract 

and then identify total RNA from the sample. Fragment scanning, database creation, and 

related consistency checking for the qualified RNA is the second step, followed by the 

sequencing to the eligible library, mainly utilizing the Illumina sequencing platform. 

Finally, the raw data collected from the sequencing can be used for the bioinformatics 

analysis (Figure 4) (Peimbert & Alcaraz 2016).  

 

 
Figure 4. High-throughput sequencing workflow for metatranscriptomics from microbial 

communities (e.g., 454 pyrosequencing) (Warnecke & Hess 2009). 

 

Bioinformatic analyses of the metatranscriptome will manage extensive data sets through 

a series of steps called a pipeline or a workflow like Galaxy, KNIME, Chipster, and 

Snakemake (Lott et al 2017). The main steps include filtering the reads; selecting the 

library between aligning reads to a reference sequence and doing de novo assembly; 

annotation with BLAST, KASS (Kegg), or M5NR; statistical analysis to give meaning to the 

data; and finally, sharing the data by uploading the original, assembled, and annotated 

data sets (Solbiati & Frias-Lopez 2018). Metatranscriptomics can be used to obtain 

unprecedented insights into community members in situ physiological properties as 

inferred from transcription profiles and investigate the actively transcribed messenger 

RNA. Metatranscriptomics research on hot springs enhances our knowledge of different 

gene-encoding energy metabolism enzymes and indicates their significance in the 

survival of microbial hot spring organisms (Tripathy et al 2016). 
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Metabolomics. Metabolomics is the large-scale study of metabolites within cells, 

biofluids, tissues, or organisms; it also includes the analysis of metabolism substrates 

and products affected by hereditary and environmental factors. Metabolites and their 

concentrations represent the underlying biochemical behavior and cell/tissue status 

(Guijas et al 2018; Nalbantoglu 2019). Mainly, there are two approaches for 

metabolomics: the untargeted or global approach, which tests as many metabolites as 

possible without any intentional bias from several biological samples (Figure 5B). The 

targeted approach measures metabolite sets when a particular biochemical query should 

be addressed; this method is commonly used in drug metabolism pharmacokinetics and 

examines the impact of medicinal or genetic alterations on a specific enzyme (Figure 5A) 

(Hyötyläinen & Wiedmer 2013).  

Figure 5. The targeted and untargeted workflow for LC–MS-based metabolomics. (A) Normal 

metabolites are used to develop targeted approaches. Afterward, the metabolites are obtained 

from tissue lysates, cells, semen, and other biofluids. The metabolites are examined, and the 

data output allows for quantifying these metabolites using previously established standard 

methods. (B) In an untargeted process, biological samples, like tissue lysates, cells, blood, 

and other biofluids, are isolated using liquid chromatography. Such samples are then analyzed 

using mass spectrometry to obtain data. Bioinformatic software is used to process the data 

and establish a global metabolic profile of biological samples (Patti et al 2012). 

 

Experimental design directs the entire metabolomics process, crucial for formulating 

research objectives and ensuring that the collected samples accurately represent the 

biological systems of interest. Subsequent to this, sample preparation involves the 

collection and preservation of samples to minimize variability and degradation. In the last 

step, extraction, liquid or gas chromatography is used to separate metabolites based on 

their chemical properties, or solid-phase extraction (SPE) is used to selectively isolate 

metabolites using sorbent materials, which improves the quality and reliability of the 

data. After that, several techniques will undergo the data analysis, namely liquid 

chromatography-mass spectrometry (LC-MS), gas chromatography-mass 

spectrometry(GC-MS), and nuclear magnetic resonance (NMR) spectroscopy; the final 

steps are data processing and statistical analysis (Tan et al 2016; Dayalan et al 2019). 

Metabolomics studies can provide a quantitative metabolite analysis and include 

qualitative information about the organisms' metabolic activities (Koek et al 2011). 

Metabolomic study results for the Mushroom Spring, Yellowstone National Park showed 

58 metabolites; this offers insight into the metabolites' dynamics to consider group 

reactions to these changing environmental conditions (Kim et al 2015). 

 

Hot springs worldwide. Although there is no widely accepted conventional definition of 

hot springs, they can usually be described as a geothermal manifestation where warm 

water in the form of spring flows out of the earth. Thompson & Turk (2005) described hot 

springs as warm groundwater flowing naturally to the ground. Sen et al (2010) described 
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hot springs as springs where the water temperature is substantially above that region's 

average annual air temperature (Sen et al 2010; Nazaruddin et al 2015). 

Several local hot springs were studied as a source of thermophilic bacteria. The 

variety of the hot springs is enormous. Most microbiologists trying to remove 

thermophiles from hot environments seems worthwhile as this environment has proved 

to be the home for helpful enzyme-producing bacteria. It is possible to use biochemical 

and molecular techniques to define the bacteria and the enzymes that are expressed 

(Zuridah & Norazwin 2011). 

As hot springs can be a source of bacteria with valuable enzymes, eight 

thermophilic isolates have been isolated from Dusun Tua hot springs and studied for their 

enzymatic activities of essential enzymes, which are protease, lipase, amylase, cellulase, 

pectinase, and xylanase. The results show that all the isolates had at least three vital 

enzyme activities; one has intense enzyme activity for all enzymes, so this isolate needs 

to be investigated more for potential biotechnological application (Msarah et al 2018).  

Eighty-four bacterial isolates were collected from multiple hot springs in Saudi 

Arabia's southern region, Al-Majardah, Al-Khubah, and Al-Ardah, and 78 exhibited 

expressions for one or more enzymes. Bacillus aerius, Bacillus licheniformis, and Bacillus 

sonorensis were identified through molecular recognition and phylogenetic analysis of 

potential isolates, which can produce the target enzymes - amylase, protease, and lipase, 

respectively. The physicochemical properties of these hot springs appear to be a virtual 

environment for thermophilic bacteria that produce hydrolytic enzymes (Alrumman et al 

2018).  

Thermophilic bacteria were isolated from Tarabalo's hot spring in India. Bacillus 

sp. were known as bacteria that could withstand high temperatures based on their 

morphology, biochemistry, and 16S rRNA gene sequencing. A BLAST search of the series 

revealed the highest resemblance to Bacillus amyloliquefaciens (99 percent similarity). 

Protease activity was increased in this strain. The study found that the extracted Bacillus 

sp. was a valid thermophile and could produce thermostable protease for pharmaceutical 

and industrial applications (Panda et al 2013). Eight strains of moderately thermophilic 

bacteria with observable galactosidase activities were obtained from a saline hot spring in 

Odaito, Japan. The representative strains BEK6 and BEK11 had 97.1 percent and 96.6 

percent nucleotide sequence similarity with Bacillus aeolius and Bacillus alveayuensis, 

respectively, and exhibited catalase and oxidase activity. The strains grow in a medium 

containing 10% NaCl. In 3 percent NaCl, the strain BEK11 displayed reasonably strong 

protease and amylase activities, implying that these enzymes may have industrial 

applications under salinity stress (Kawasaki et al 2011). 

Table 1 summarizes the worldwide hot springs as a source of novel enzymes. New 

techniques and approaches are arising to study the whole genome content of a particular 

habitat without using the cultivation-based method. Metagenomic sequencing is now 

widely used; for example, it was used to determine the microbial diversity in the second 

hottest hot spring in Malaysia, namely the Sungai Klah hot spring; the temperature of the 

water sample was 80oC, a result, 96.8% of the16SrRNA gene fragments were allocated to 

bacteria. In comparison, 0.91% belonged to Archaea, 35 phyla were presented, and the 

major phylum was Firmicutes, accounting for 37.15%. In general, the fragments were 

classified into 67 classes, 120 orders, 206 families, and 358 genera, which shows the 

diversity of the microbial population in this hot spring (Chan et al 2015). On the other 

side, whole-genome sequencing of the thermophilic Thermus sp. CCB US3 UF1, known as 

an essential source of thermophilic enzymes extracted from a hot spring in Malaysia, 

reveals valuable knowledge of this genus which can be used in industrial and 

biotechnological fields (Teh et al 2015).   

A novel glutaredoxin gene segment was discovered in a metagenomic library from 

soil sediment obtained from a hot spring in Tapovan District, Chamoli, Uttarakhand, 

India. An open reading frame analysis found a 420-nucleotide coding sequence. This 

location encodes a 139-amino-acid protein with a homologous relationship with 

glutaredoxin from Thermus sp., with 84% query coverage. Multiple sequence alignment 

reveals a glutaredoxin domain with a redox-active CXXC motif in the shape of the 

catalytic motif CLYC, indicating that this is a novel glutaredoxin gene (Rawat et al 2018).   
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Environmental DNA was collected from a hot spring field in Niujie, Eryuan, Yunnan 

province, China, to establish a metagenomic bacterial artificial chromosome (BAC) library. 

This library yielded eight esterase/lipase genes in three novels. A lipase gene with 622 

amino acid residues has been discovered. This lipase has a high tolerance for methanol, 

according to its enzymatic properties. This novel lipase gene, lip-1, has many potentials 

for biodiesel production because of its reduced preparation cost, excellent durability, and 

methanol tolerance (Yan et al 2017).  

 

Table 1  

Summary of hot springs and their thermoenzymes content 

 

Hot springs name 
Enzymatic activity 

screened 
Type of bacteria References 

Labis, Dusun Tua, 

Ulu Legong  and 

Ranau 

Phytase Gram – Alias et al (2017) 

Gadek, Labis, 

Pedas, Sg. Klah, 

Selayang 

Lipase Bacillus species 

Geobacillus species 

Zuridah & 

Norazwin (2011) 

Dusun Tua Protease, lipase, 

amylase, cellulase, 

pectinase, and 

xylanase 

Gram – (bacilli) Msarah et al 

(2018) 

KSA 

(Al-Majardah,  

Al-Khubah and Al-

Ardah) 

α-amylase 

Protease, Lipase 

Bacillus aerius, 

Bacillus licheniformis, 

Bacillus sonorensis 

Alrumman et al 

(2018) 

India 

(Tarabalo) 

Protease Bacillus amyloliquefaciens Panda et al 

(2013) 

Japan 

(Odaito, 

Hokkaido) 

Protease, 

amylase 

Bacillus aeolius, 

Bacillus alveayuensi 

Kawasaki et al 

(2011) 

Thailand 

(Chiang Mai) 

Superoxide dismutase 

(SOD) 

B. stearothermophilus Sookkheo et al 

(2002) 

Armenian 
(Akhurik, 

Arzakan, Bjni, 

Hankavan, 
Jermaxbjur, 

Jermuk, Tatev, 
Uys, Karvachar, 

Zuar) and 
Nagorno-

Karabakhian 

(Karvachar, Zuar) 

Lipase, protease, 

amylases 

Anoxybacillus,  

Bacillus,  

Brevibacillus,  

Geobacillus,  

Paenibacillus, 

Sporosarcina, 

Ureibacillus, 

Thermoactinomyces 

Panosyan (2017) 

Philippines 
(Badekbek mud 

spring in Bokod 
and Dalupirip hot 

spring in Itogon) 

Xylanase Geobacillus, Thermonema, 
Meiothermus, 

Anoxybacillus, 
G. thermoparaffinivorans, 

G. thermoleovorans 

Daupan & Rivera 

(2015) 

Turkey 

(Seferihisar 

Karakoc 

hotspring) 

Carboxylesterase Anoxybacillus sp. PDF1 Ay et al (2011) 

Azad Kashmir, 

Pakistan 

(Tattapani hot 

spring) 

Extracellular α-
amylase, CMCase, 
FPase, xylanase, 

protease and lipase, 
and intracellular 

CMCase and FPase 

Thermophilic bacterium 

(TP-2) 

Zahoor et al 

(2016) 
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Conclusions. Thermophiles and extreme thermophiles are a significant source of new 

enzymes commonly used in industry, so there is a growing interest in isolating and 

classifying them; new techniques help not only to isolate these bacteria but also in 

determining how they can survive in harsh conditions by studying the genes that are 

responsible for extreme enzymes production. Studies on hot springs reveal that they 

harbor important thermophile species that can produce critical thermophilic enzymes. 

Further studies are needed to utilize these habitats as a source for thermophilic enzymes 

used in the industry. 
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