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Abstract. The aim of the work was to conduct a comparative analysis of Amur carp (Cyprinus 
rubrofuscus) produced from fresh and defrosted sperm, which was cryopreserved for 24 years, based on 
the polymorphism of microsatellite loci and to study the heterogeneity of these groups. The genetic 
structure of carp produced from the defrosted sperm represented a range of amplicons of local stocks. 
Specific alleles occurred at MFW 6 and MFW 31 loci, which were not observed in the local carp group. 
This indicates a higher level of polymorphism, which was also confirmed by the higher Shannon 
biodiversity index at these loci (I = 1.727 in the cryo-carp group vs I = 1.383 in the local carp group). 
The mean number of alleles per locus (Na) and the effective number of alleles per locus (Ne) was higher 
in the cryo-carp group (Na = 7.25 and Ne = 5.2) compared to the local carp group (Na = 5.75 and Ne = 
3.9). The genetic variability was distributed by 7.7% (Fst = 0.077) between the studied carp groups. The 
microsatellite markers used were found to be highly informative (average PIC = 0.678), and therefore 
effective for further use in monitoring the changes in the gene pool of cyprinids under the effect of 
cryopreservation. The obtained results demonstrated the effectiveness of the use of cryopreserved sperm 
to improve the genetic structure, and also allow assessing the degree of domestication of carp groups. 
Further analysis of the genetic structure of the offspring and fish sperm can allow developing strategies 
for preserving the biodiversity of the gene pool of carp of natural and artificial stocks. 
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Introduction. The cryopreservation of fish sperm is a promising method for the 
conservation of gene pool of endangered fish species and valuable objects of aquaculture 
(Demkina et al 1997; Labbe et al 2001; Golovanova et al 2003; Billard et al 2004; Beh 
2004; O’Reilly & Doyle 2007; Martínez-Páramo et al 2009; Ponomareva et al 2009; 
Cabrita et al 2010; Chew et al 2010; Matishov et al 2012; Shishanova et al 2012;  
Ananev & Manohina 2013; Asturiano et al 2016; Cherepnin 2016; Martínez-Páramo et al 
2017; Ponomareva et al 2017; Kilyakova et al 2019). This method is useful for restoring 
the heterogeneity of the gene pool of commercial fish stocks, which are in an inhibited 
condition during domestication (Pronina et al 2010; Osipova et al 2016; Kononenko 
2017) or high-quality broodstock of remote fish farms (Yamaner et al 2015; Kilyakova et 
al 2019), that is quite effective in cases of inbred depressions. 

Currently, there is a positive international experience in the use of cryopreserved 
sperm to restore the population structure of different fish species (Martínez-Páramo et al 
2017; Linhart et al 2000; Di Chiacchio et al 2017; Ponomareva et al 2017). In Ukraine, 
cryocollections of fish sperm are preserved in one of the oldest cryobanks in Europe at 
the Institute of Cryobiology and Cryomedicine of the National Academy of Sciences of 
Ukraine (Kopeika et al 2011) and at the Institute of Fisheries of the National Academy of 
Agrarian Sciences of Ukraine. 

However, despite successful results of the use of cryopreservation, there are still 
issues about improving the methods of cryopreservation of fish sperm and defrosting it 
with the preservation of all biological properties, as well as issues about the effect of 
cryopreserved sperm on the genetic structure of fish populations (Demkina et al 1997; 
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Bogatyireva & Ponomareva 2009; Ponomareva et al 2009; Asturiano et al 2017; 
Cherepnin 2016). 

There are a number of problems related to the fact that a part of the material 
intended for cryopreservation cannot be frozen or they are not of good quality after 
thawing; e.g., spermatozoa lose their ability to fertilize eggs and sometimes offspring is 
characterized by low viability that indicates low effectiveness of these methods (Zemkov 
& Akimochkina 2009; Shishanova et al 2012; Cherepnin 2016; Kilyakova et al 2019). The 
selective mortality of Russian sturgeon (Acipenser gueldenstaedtii) embryos associated 
with the process of sperm cryopreservation was shown to be caused by changes in the 
genetic structure such as an increase in the number of heterozygotes at the malate 
dehydrogenase and esterase loci as well as the elimination of alleles with low frequency 
at the esterase locus (Shishanova et al 2012). Thus, the consequence of the use of 
cryopreserved sperm may be the selection towards certain isoenzymes and their isoforms 
as a result of biochemical adaptation under the effect of stress factors (Shishanova et al 
2012). Modern science takes significant steps to solve the problem of viability of 
defrosted material. Creation of a cryocollection requires selection based on genotypes 
(Golovanova et al 2003; Pronina et al 2010) with several dozens of replicates, which 
would characterize the genetic polymorphism of valuable biological material, in order to 
compensate for losses during defrosting and complete reproduction of genetic 
polymorphism of fish stocks of interest (Golovanova et al 2003; Pronina et al 2010).  

A number of works (Demkina et al 1997; Shishanova et al 2012), which studied 
the effect of cryopreserved sperm on the heterogeneity of fish stocks, were conducted 
using genetic and biochemical systems (GBS). However, GBSs were later replaced by 
DNA markers, which have already proven to be convenient and effective tools for studies 
in the field of population genetic and gene pool management in long-term fish 
biodiversity conservation programs (Golovanova et al 2003; Abdul-Muneer 2014; O’Reilly 
& Kozfkay 2014).  

The importance of studies on the cryopreserved sperm of different fish species 
today cannot be underestimated. The extinction of valuable fish species in the wild under 
the influence of human impact, including possible deterioration of environmental 
conditions as well as the loss of genetic diversity of aquaculture stocks due to the 
intensive use of broodstock without regard to their genetic structure have become a 
driving force for such studies.  

For many years, Amur carp (Cyprinus rubrofuscus) has been used for industrial 
hybridization with European carp (C. carpio). Due to heterosis effect, the produced 
hybrids are characterized by higher growth rate, resistance to the most common fish 
diseases, and their cultivation increases pond productivity by 19-22% (Oleksiyenko et al 
2012). However, intensive selection in aquaculture often results in a differentiation from 
the unique primary genetic structure of "pure forms" of Amur carp; therefore, the 
cryopreserved sperm can be used as a method of preservation and rational use of their 
gene pool.  

The aim of the work was to conduct a comparative analysis of Amur carp produced 
from fresh and defrosted sperm based on the polymorphism of microsatellite loci and to 
study the heterogeneity of these groups. 

 
Material and Method. Two groups of Amur carp were used in the study:  

- control group (local carp) included fish produced using fresh sperm of local Amur 
carp stocks (n = 15), which are descendants of Amur carp brought to the Experimental 
Fish Farm "Velykyi Lyubin" (Lviv region, Ukraine) from the Russian Far East (Amur River) 
in 1987 (Savich 1979) and are their eighth generation;  

- experimental group (cryo-carp) included carp produced from defrosted sperm (n 
= 15) at the State Enterprise Experimental Fish Farm "Nyvka" (Kyiv region) (Bezusyi et 
al 2011). This sperm was obtained from males caught in their native range in the Amur 
River basin and cryopreserved on June 21-23, 1987 at the thermal fish farm of the 
Primorsky Hydropower Plant, Russia (Kopeika et al 2011). The cryopreserved sperm was 
then transported to the cryobank collection of the Institute of Cryobiology and 
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Cryomedicine of the National Academy of Sciences of Ukraine and stored there (Bezusyi 
et al 2011; Kolisnyk et al 2014). 

Fish for artificial fertilization (three age-7 females and three age-8 males) were 
brought from the State Enterprise Experimental Fish Farm "Velykyi Lyubin" (Lviv region) 
to the State Fish Farm of the Institute of Fisheries of the National Academy of Agrarian 
Sciences of Ukraine “Nyvka” (Kyiv region) in the mid-May 2011. Males and females 
before fertilization were held separately in 3.2 m3 plastic tanks for ten days. 

Fertilization was conducted using a traditional insemination technique in the third 
decade of May 2011. Eggs obtained from females were mixed and divided into two parts, 
which were inseminated either with fresh (a mixture of sperm from three males) or 
defrosted sperm, respectively. Eggs were incubated in 8 L Weiss jars. The 4-day fry were 
transported to the Fish Farm “Velykyi Lyubin” and released separately (local and cryo-
carp) into 0.64 ha earth ponds at a stocking density of 20,000 ind ha-1. Fish then were 
cultured according to standard techniques of pond carp aquaculture. 

Adult fish were held in 1.75 ha earth ponds at a stocking density of 75 ind ha-1. 
They were fed with sprouted wheat grains during summer and a mixture of a specialized 
fish feed Biomar and sprouted wheat grains (50:50) during prespawning period. Age-6+ 
fish were tagged with individual PIT-tags inserted under the dorsal fin. 

The material for the current study was collected in September 2019. Only males 
were used in experiments. Following exterior parameters were measured: body weight, 
body length, body depth, body circumference, head length (Oleksiyenko et al 2012). 
These parameters were measured by a measuring tape to the nearest 1 mm and weighed 
on electronic balances to the nearest 1 g. Following ratios were calculated based on 
measurement results: body length to circumference ratio (L:C), body length to depth 
ration (L:D), and head length to body length ration (H:B). Measured and calculated 
parameters of two groups of fish were compared using a t-test.  

Blood was taken from the caudal vein of the measured fish of both groups. Blood 
was drawn by sterile syringes with heparin solution (25 IU mL-1). Samples were 
transported at a temperature of 4oC and then stored in a fridge at -20oC. Isolation of 
total DNA from blood was performed using a commercial DNA-Go kit (BioLabTech LTD). 
The concentration and quality of the isolated DNA was determined using an Eppendorf 
biophotometer (Eppendorf, Germany). The genetic structure of two groups of carp was 
analyzed with the use of four microsatellite (SSR) markers: MFW 6, MFW 15, MFW 23, 
MFW 31 (Сrooijmans et al 1997) (Table 1). 

 

Table 1 
Microsatellite markers used in the study for analyzing Amur carp 

 
Locus Primer sequence 5'→3' Primer annealing temperature (°C) 

MFW 06 F*: АCСТGАTСААTCССTGGСТС 
R**: ТТGGGАСТТTTАААTCАCGTТG 

55 

MFW 15 F: CTCCTGTTTТGТTTTGTGААА 
R: GTTCACAAGGTCATTTCCAGC 

55 

MFW 23 F: GТАТААТТGGGАGТТТТАGGG 
R: САGGТТТАТСТСССТТСТАG 

55 

MFW 31 F: CCTTCCTCTGGCCATTCTCAC 
R: TACATCGCAGAGAATTCGTAAG 

55 

Note: F* - forward primer sequence; R** - reverse primer sequence. 
 

The polymerase chain reaction was performed using New England Biolabs’ Taq 2X Master 
Mix in a Thermo Scientific™ Arktik™ Thermal Cycler. Amplification was performed under 
the following conditions: initial DNA denaturation at 95°C for 5 min, following 35 cycles: 
DNA denaturation at 95°C for 30 sec, primer annealing at 55°C for 45 sec, chain 
synthesis at 72ºC for 1 min 30 sec; final elongation at 72°C for 10 min. 

Electrophoretic separation was performed in a 3% agarose gel with ethidium 
bromide in 1×TAE buffer. The Quick-load Purple 50 bp DNA Ladder (New England 
Biolabs) was used as a fragment length marker. The determination of fragment lengths 
was performed in Totallab v.2.01. Statistical processing was performed in Genalex 6.5. 
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(Peakall & Smouse 2006, 2012). The polymorphism information content (PIC) was 
calculated according to the generally accepted formulas for codominant markers (Nagy et 
al 2012). 

The number of different alleles per locus (Na), effective number alleles per locus 
(Ne), number of private alleles, observed heterozygosity (Ho), expected heterozygosity 
(He), expected unbiased heterozygosity (uHe), Shannon's Information Index (I), Hardy–
Weinberg probability test and F-Statistics were obtained for each population using 
GenAlEx version 6.5 (Peakall & Smouse 2006, 2012). 

 
Results. The genetic polymorphism parameters at microsatellite loci, which were 
determined by a molecular genetic analysis of two groups of Amur carp produced with 
the use of fresh and cryopreserved sperm, are presented in Table 2 and Figure 1. 

 

Table 2 
Genetic variability parameters of the studied groups of Amur carp at four microsatellite loci 

 
Group Locus Amplicon size range, bp Na Ne Ho He Prob PHW 

MFW 6 150-165 2 1.960 0.000 0.490 0.008 ** 
MFW 15 157-296 10 6.095 0.875 0.836 0.862 ns 
MFW 23 95-142 6 5.556 0.600 0.820 0.290 ns 
MFW 31 273-353 5 2.000 0.250 0.500 0.007 ** 

Mean 5.750 3.903 0.431 0.661  - 

Group 1 
Local 
carp 

SE 1.652 1.116 0.192 0.096  - 
MFW 6 124-165 4 2.299 0.100 0.565 0.002 ** 
MFW 15 157-286 9 7.692 0.600 0.870 0.203 ns 
MFW 23 95-150 8 6.061 0.500 0.835 0.012 * 
MFW 31 210-345 8 5.128 0.400 0.805 0.079 ns 

Mean 7.250 5.295 0.400 0.769  - 

Group 2 
Cryo-
carp 

SE 1.109 1.131 0.108 0.069  - 
Notes: Na - number of alleles per locus; Ne – effective number of alleles per locus; Ho - observed heterozygosity; 
He - expected heterozygosity; Prob-PHW - Hardy–Weinberg probability test: *p < 0.05, ** p < 0.01, n.s. = 
nonsignificant deviation.  
 

 
Figure 1. Shannon Index (I), unbiased expected heterozygosity (uHe), polymorphism 
information content for two studied groups of Amur carp at four microsatellite loci. 

 
The number of alleles per locus (Na) varied from two (locus MFW 6) to ten (MFW 15) in 
the local carp group and from four (MFW 6) to nine (MFW 15) in the cryo-carp group. The 
average number of alleles per locus and effective number of alleles per locus (Ne) were 
higher in the cryo-carp group and composed 7.250 (SE 1.109) and 5.295 (SE 1.131), 
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respectively, compared to the local carp group, where Na = 5.750 (SE 1.652) and Ne = 
3.903 (SE 1.116). 

The cryo-carp had a significantly broader range of amplicon sizes at the loci MFW 
6 and MFW 31 towards those with a lighter molecular weight of alleles compared to the 
local carp. The frequencies of the occurrence of specific alleles in the studied groups are 
presented in Table 3. 

 

Table 3 
Frequencies of occurrence of alleles in two groups of carp at four microsatellite loci 

 
MFW 6 MFW 15 MFW 23 MFW 31 

Allele Gr 1 Gr 2 Allele Gr 1 Gr 2 Allele Gr 1 Gr 2 Allele Gr 1 Gr 2 
124 - 0.050 157 0.313 0.100 95 0.100 0.250 210 - 0.050 
137 - 0.100 167 0.188 0.150 106 0.100 0.050 239 - 0.150 
150 0.429 0.600 220 - 0.100 112 0.200 0.150 260 - 0.350 
165 0.571 0.250 230 0.063 0.100 121 0.200 0.100 265 - 0.150 

   236 0.063 0.200 127 0.200 0.150 273 0.063 - 
   245 0.063 0.050 135 - 0.050 291 0.688 0.050 
   255 0.063 0.100 142 0.200 0.050 318 0.125 0.100 
   265 0.063 0.150 150 - 0.200 335 - 0.100 
   272 0.063 -    345 0.063 0.050 
   280 0.063 -    353 0.063 - 
   286 - 0.050       
   296 0.063 -       

Notes: Gr 1 - group of carp produced from fresh sperm; Gr 2 - group of carp produced from cryopreserved sperm.  
 

The Shannon index (I), which depicts the complexity of the population structure based on 
a quantitative representation of objects within populations and usually varies from 1.5 to 
3.5, showed that the cryo-carp group had a more complex genetic structure (1.727) than 
the local carp group (1.383) (Figure 1). 

The average values of the observed (Ho) and expected (He) heterozygosity of the 
two studied groups of carps did not differ significantly for the selected microsatellite loci. 
However, the unbiased expected heterozygosity (uHe) showed significant differences 
between the studied groups of carp at the locus MFW 31 that was also confirmed by the 
Shannon index for this locus (Figure 1). 

The highest observed heterozygosity (Ho) was detected at the loci MFW 15 and 
MFW 23 indicating significant difference in genetic features at these loci compared to 
other two studied loci and, therefore, they have the highest differentiating potential for 
the comparative analysis of the studied groups of Amur carp. This was also confirmed by 
the polymorphism information content (PIC) (Figure 1). The least informative for both 
studied groups was the locus MFW 6, while the loci MFW 15 and 23 were characterized by 
the highest PIC values.  

Insignificant deviations from the Hardy–Weinberg distribution was observed at the 
locus MFW 15 in both groups of Amur carp as well as at the locus MFW 23 for the local 
carp group and at the locus MFW 31 for the cryo-carp group (Table 2).  

The inbreeding coefficient of an individual relative to the total population (Fis), 
inbreeding coefficient of an individual relative to the species (Fit), inbreeding coefficient of 
a population relative to the species (Fst) calculated for each analyzed locus are shown in 
Table 4. 

 
Table 4 

F-Statistics and estimates of Nm over all populations for each locus 
 

Parameters MFW 6 MFW 15 MFW 23 MFW 31 Mean SE 
Fis 0.905 0.135 0.335 0.502 0.469 0.163 
Fit 0.911 0.160 0.356 0.594 0.505 0.162 
Fst 0.064 0.029 0.031 0.186 0.077 0.037 
Nm 3.632 8.503 7.881 1.097 5.278 1.765 

Note: Nm - average level of gene flow per generation. 
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A positive average Fis value indicates a 46.9% deficiency of heterozygous 
genotypes at the studied loci. Fit is also positive and averages 0.505 that indicates a 50% 
deficiency of heterozygotes in the species as a whole. Fst, which reflects the degree of 
differentiation of the studied groups, showed that 92.3% of the genetic variability 
detected in the studied groups of carp were within the local stock of Amur carp and only 
7.7% (Fst = 0.077) were distributed between the studied groups. The obtained average 
value of Fst indicates the genetic division of the studied populations. The highest 
contribution to the interpopulation component of variability was due to the highly 
polymorphic locus MFW 31 (Fst = 0.186).   

The Nei unbiased genetic distance between two studied groups was 0.334.  
The obtained data of genetic analysis are supported by differences in 

morphometric parameters (Table 5). According to the analysis of exterior measurements, 
age-8 males of Amur carp produced from the defrosted sperm were characterized by 
usually higher parameters than the males of local carp of the same age. However, no 
significant difference was observed for the body circumference and head length to body 
length ratio (Table 5). 

 
Table 5 

Exterior parameters of age-8 males of Amur carp of different origins (mean±SE) 
 

Genetic origin Parameters 
local (n = 8) cryo (n = 10) 

Body weight, g 2015.0±86.46 2416.5±93.47** 
Body length, cm 46.8±0.58 50.7±0.61** 
Head length, cm 11.13±0.18 11.85±0.13** 
Body depth, cm 12.09±0.26 12.45±0.17* 

Body circumference, cm 31.69±0.57 31.4±1.31 
L:D ratio 3.88±0.07 4.07±0.04* 
L:C ratio 1.48±0.02 1.55±0.01* 
H:L ratio 23.76±0.20 23.42±0.36 

Note:* p < 0.05; ** p < 0.01; *** p < 0.001. 
 

Discussion. DNA markers have long been used to study the effect of cryopreservation 
on the genetic polymorphism of fish offspring produced from cryopreserved sperm, e.g., 
studies using RAPD markers to assess cryocollections of whitefish (Stenodus leucichthys) 
(Golovanova et al 2003) and studies using microsatellites of brown trout (Salmo trutta) 
produced from cryopreserved sperm (Martínez-Páramo et al 2009). The current study 
attempted to assess the degree of domestication of Amur carp by confirming changes in 
their genetic structure because local stocks of this species have a long history of captive 
breeding and selection, while carp, from which sperm was obtained for cryopreservation, 
are supposed to be wilder varieties than the domesticated stocks. Microsatellite markers 
have been found to be useful for cyprinid differentiation and record well the degree of 
domestication of populations (Tomljanović et al 2013). Studies using microsatellite 
markers including MFW23 and MFW31 showed that domestic carp being a form of wild 
carp and having a long history of domestication were characterized by a lower average 
number of alleles than carp in natural populations (Tomljanović et al 2013). Therefore, 
the number of alleles per locus may reflect the degree of domestication of carp indicating 
a change in the genetic structure during long-term selection of carp cultured at fish 
farms. Tomljanović et al (2013) found that the average value of alleles per locus among 
five groups of carp caught in natural water bodies was 6.12, while this value for five 
groups of carp farmed in Croatia was significantly lower and composed 3.86. Similar 
conclusions were made by Kohlmann et al (2005), who found the highest allelic richness 
in the group of wild-caught carp (8.221), and the lowest - in farmed carp (4.436).  

The values of the average number of alleles per locus for carp of both groups 
obtained in this study are quite similar to those of carp produced in the study of 
Tomljanović et al (2013). Thus, fish breeding activities with the groups of Amur carp 
cultured at the Experimental Fish Farm "Velykyi Lyubin" somewhat narrowed the range of 
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amplicons but did not lead to a significant loss of genetic diversity in the studied 
microsatellite loci and, in general, this stock represents the genetic structure of Amur 
carp of native populations. 

Carp breeding works resulted in the elimination of alleles with low molecular 
weight such as MFW 6 (allele 124, 137 bp) and MFW 31 (alleles 210, 239, 260, 265 bp). 
It is worth noting that the use of cryopreserved carp sperm in our studies results in an 
increase in genetic diversity, which can be evidenced by the number of alleles per locus 
and an increase in the range of amplicon sizes at individual loci. 

The PIC index assessed in our work indicates that the microsatellite loci used are 
informative for the study of polymorphism in the genetic structure of carp. The PIC index 
for the studied SSR loci was higher than 0.5 that indicates a high level of informativeness 
for codominant markers. The exceptions were the loci MFW 6 and MFW 31 in the analysis 
of local groups: they were characterized by a medium level of informativeness as PIC 
varied between 0.25 and 0.5. 

The use of Amur carp males produced from defrosted sperm had a positive effect 
on the exterior parameters of their offspring. For example, the mean weight and length 
of cryo-carp exceeded those of local carp by 19.9% and 8.2%, respectively.  
 
Conclusions. The analysis using microsatellite markers showed differences and common 
features of the genetic structure of Amur carp groups produced from cryopreserved and 
native sperm. The use of cryopreserved sperm had a positive effect on the variability of 
microsatellite loci in fish causing an increase in the number of alleles at the studied loci, 
the range of amplicons compared to the local group, as well as an increase in the 
biodiversity index. The cryo-carp had specific alleles compared to the local carp of 
classical selective breeding. The genetic structure of cryo-carp is supposed to be close to 
that of natural wild populations that indicates a positive effect resulting in an 
improvement of the genetic potential of brood fish. 

The studied loci MFW 15 and MFW 23 proved to be highly informative and 
therefore can be used for further monitoring work on the analysis of the heterogeneity of 
carp genetic structure. 

The assessment of carp genome diversity using microsatellite markers is one of 
the methods of restoring genetic structure and increasing its heterogeneity. Further 
analysis of the genotypes of cryopreserved material and offspring of future generations 
will allow creating recommendations for the effective use of cryocollections for 
interspecific hybridization using purebred brood fish (or their genetic material) and 
monitoring of the obtained offspring. 
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